Phase-field simulations of interfacial dynamics in viscoelastic fluids using finite elements with adaptive meshing
نویسندگان
چکیده
This paper describes a novel numerical algorithm for simulating interfacial dynamics of non-Newtonian fluids. The interface between two immiscible fluids is treated as a thin mixing layer across which physical properties vary steeply but continuously. The property and evolution of the interfacial layer is governed by a phase-field variable / that obeys a Cahn–Hilliard type of convection-diffusion equation. This circumvents the task of directly tracking the interface, and produces the correct interfacial tension from the free energy stored in the mixing layer. Viscoelasticity and other types of constitutive equations can be incorporated easily into the variational phase-field framework. The greatest challenge of this approach is in resolving the sharp gradients at the interface. This is achieved by using an efficient adaptive meshing scheme governed by the phase-field variable. The finite-element scheme easily accommodates complex flow geometry and the adaptive meshing makes it possible to simulate large-scale two-phase systems of complex fluids. In two-dimensional and axisymmetric three-dimensional implementations, the numerical toolkit is applied here to drop deformation in shear and elongational flows, rise of drops and retraction of drops and torii. Some of these solutions serve as validation of the method and illustrate its key features, while others explore novel physics of viscoelasticity in the deformation and evolution of interfaces. 2006 Elsevier Inc. All rights reserved.
منابع مشابه
3D phase-field simulations of interfacial dynamics in Newtonian and viscoelastic fluids
This work presents a three-dimensional finite-element algorithm, based on the phase-field model, for computing interfacial flows of Newtonian and complex fluids. A 3D adaptive meshing scheme produces fine grid covering the interface and coarse mesh in the bulk. It is key to accurate resolution of the interface at manageable computational costs. The coupled Navier-Stokes and Cahn-Hilliard equati...
متن کاملSimulating Two-Phase Viscoelastic Flows Using Moving Finite Element Methods
Phase-field models provide a way to model fluid interfaces as having finite thickness; the interface between two immiscible fluids is treated as a thin mixing layer across which physical properties vary steeply but continuously. One of the main challenges of this approach is in resolving the sharp gradients at the interface. In this paper, moving finite-element methods are used to simulate inte...
متن کاملViscoelastic effects on drop deformation in steady shear
This paper applies a diffuse-interface model to simulate the deformation of single drops in steady shear flows when one of the components is viscoelastic, represented by an Oldroyd-B model. In Newtonian fluids, drop deformation is dominated by the competition between interfacial tension and viscous forces due to flow. A fundamental question is how viscoelasticity in the drop or matrix phase inf...
متن کاملNumerical simulation of the fluid dynamics in a 3D spherical model of partially liquefied vitreous due to eye movements under planar interface conditions
Partially liquefied vitreous humor is a common physical and biochemical degenerative change in vitreous body which the liquid component gets separated from collagen fiber network and leads to form a region of liquefaction. The main objective of this research is to investigate how the oscillatory motions influence flow dynamics of partial vitreous liquefaction (PVL). So far computational fluid d...
متن کاملNew DKFT Elements for the Finite Element Analysis of Thin Viscoelastic Plates
In this paper, finite element analysis of thin viscoelastic plates is performed by proposing new plate elements using complex Fourier shape functions. New discrete Kirchhoff Fourier Theory (DKFT) plate elements are constructed by the enrichment of quadratic function fields in a six-noded triangular plate element with complex Fourier radial basis functions. In order to illustrate the validity...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- J. Comput. Physics
دوره 219 شماره
صفحات -
تاریخ انتشار 2006